Math 10A
Worksheet, Discussion \#7; Tuesday, 6/26/2018
Instructor name: Roy Zhao

1 Graphing Functions

1. Sketch the graph of $f(x)=e^{x}+2 e^{-x}$.

Solution: Take the derivative and second derivative to get $f^{\prime}(x)=e^{x}-2 e^{-x}$ and $f^{\prime \prime}(x)=e^{x}+2 e^{-x}$. We want to make a table and the values we care about are when $f^{\prime}(x)=0, f^{\prime \prime}(x)=0$, and when they are not defined. They are always defined and solving $f^{\prime}(x)=0$ gives $e^{2 x}=2$ so $x=\frac{\ln 2}{2}$, and $f^{\prime \prime}(x)=0$ has no solutions. So the point we need to put in is just $x=\frac{\ln 2}{2}$. We fill out the table the sign of $f^{\prime}, f^{\prime \prime}$ on these intervals to get

	$(-\infty,(\ln 2) / 2)$	$(\ln 2) / 2$	$((\ln 2) / 2, \infty)$
$f^{\prime}(x)$	-	0	+
$f^{\prime \prime}(x)$	+	+	+

Now we calculate the limits as $x \rightarrow \pm \infty$. We have $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow \infty} f(x)=\infty$. We can now use this to produce something similar to the following graph noting that f will have a local minimum at $x=\frac{\ln 2}{2}$ by the second derivative test.

2. Sketch the graph of $f(x)=x-x^{3}$.

Solution: Take the derivative and second derivative to get $f^{\prime}(x)=1-3 x^{2}$ and $f^{\prime \prime}(x)=-6 x$. We want to make a table and the values we care about are when $f^{\prime}(x)=0, f^{\prime \prime}(x)=0$, and when they are not defined. They are always defined and solving $f^{\prime}(x)=0$ gives $x^{2}-1 / 3=0$ so $x= \pm 1 / \sqrt{3}$, and $f^{\prime \prime}(x)=0$ gives $x=0$. So the points we need to put in our table are $x=0, \pm 1 / \sqrt{3}$. We fill out the table the sign of $f^{\prime}, f^{\prime \prime}$ on these intervals to get

	$(-\infty,-1 / \sqrt{3})$	$-1 / \sqrt{3}$	$(-1 / \sqrt{3}, 0)$	0	$(0,1 / \sqrt{3})$	$1 / \sqrt{3}$	$(1 / \sqrt{3}, \infty)$
$f^{\prime}(x)$	-	0	+	+	+	0	-
$f^{\prime \prime}(x)$	+	+	+	0	-	-	-

Now we calculate the limits as $x \rightarrow \pm \infty$. We have $\lim _{x \rightarrow-\infty} f(x)=-\infty, \lim _{x \rightarrow \infty} f(x)=\infty$.
We can now use this to produce something similar to the following graph noting that f will have a local minimum at $x=-1 / \sqrt{3}$ and maximum at $x=1 / \sqrt{3}$ by the second derivative test.

3. Sketch the graph of $f(x)=-12 x-\frac{9 x^{2}}{2}+x^{3}$.

Solution: Take the derivative and second derivative to get $f^{\prime}(x)=-12-9 x+3 x^{2}$ and $f^{\prime \prime}(x)=6 x-9$. We want to make a table and the values we care about are when $f^{\prime}(x)=0, f^{\prime \prime}(x)=0$, and when they are not defined. They are always defined and solving $f^{\prime}(x)=0$ gives $x^{2}-3 x-4=0$ so $x=-1,4$, and $f^{\prime \prime}(x)=0$ gives $x=3 / 2$. So the points we need to put in our table are $x=-1,3 / 2,4$. We fill out the table the sign of $f^{\prime}, f^{\prime \prime}$ on these intervals to get

	$(-\infty,-1)$	-1	$(-1,1.5)$	1.5	$(1.5,4)$	4	$(4, \infty)$
$f^{\prime}(x)$	+	0	-	-	-	0	+
$f^{\prime \prime}(x)$	-	-	-	0	+	+	+

Now we calculate the limits as $x \rightarrow \pm \infty$. We have $\lim _{x \rightarrow-\infty} f(x)=-\infty, \lim _{x \rightarrow \infty} f(x)=\infty$. We can now use this to produce something similar to the following graph noting that
f will have a local minimum at $x=4$ and maximum at $x=-11$ by the second derivative test.

4. Sketch the graph of $f(x)=\frac{1}{1+x^{2}}$.

Solution: Take the derivative and second derivative to get $f^{\prime}(x)=\frac{-2 x}{\left(x^{2}+1\right)^{2}}$ and $f^{\prime \prime}(x)=\frac{6 x^{2}-2}{\left(x^{2}+1\right)^{3}}$. We want to make a table and the values we care about are when $f^{\prime}(x)=0, f^{\prime \prime}(x)=0$, and when they are not defined. They are always defined and solving $f^{\prime}(x)=0$ gives $x=0$, and $f^{\prime \prime}(x)=0$ gives $6 x^{2}-2=0$. So the points we need to put in our table are $x=0, \pm 1 / \sqrt{3}$. We fill out the table the sign of $f^{\prime}, f^{\prime \prime}$ on these intervals to get

	$(-\infty,-1 / \sqrt{3})$	$-1 / \sqrt{3}$	$(-1 / \sqrt{3}, 0)$	0	$(0,1 / \sqrt{3})$	$1 / \sqrt{3}$	$(1 / \sqrt{3}, \infty)$
$f^{\prime}(x)$	+	+	+	0	-	-	-
$f^{\prime \prime}(x)$	+	0	-	-	-	0	+

Now we calculate the limits as $x \rightarrow \pm \infty$. We have $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow \infty} f(x)=0$. So there is a horizontal asymptote at $y=0$. We can now use this to produce something similar to the following graph noting that f will have a local maximum at $x=0$ by the second derivative test.

5. Sketch the graph of $f(x)=x+\frac{1}{2+x}$.

Solution: Take the derivative and second derivative to get $f^{\prime}(x)=1-\frac{1}{(x+2)^{2}}$ and $f^{\prime \prime}(x)=\frac{2}{(x+2)^{3}}$. We want to make a table and the values we care about are when $f^{\prime}(x)=0, f^{\prime \prime}(x)=0$, and when they are not defined. They are not defined when $x=-2$ and solving $f^{\prime}(x)=0$ gives $(x+2)^{2}=1$ so $x=-3,-1$, and $f^{\prime \prime}(x)=0$ has no solutions. So the points we need to put in our table are $x=-3,-2,-1$. We fill out the table the sign of $f^{\prime}, f^{\prime \prime}$ on these intervals to get

	$(-\infty,-3)$	-3	$(-3,-2)$	-2	$(-2,-1)$	-1	$(-1, \infty)$
$f^{\prime}(x)$	+	0	-	DNE	-	0	+
$f^{\prime \prime}(x)$	-	-	-	DNE	+	+	+

Now we calculate the limits as $x \rightarrow \pm \infty$. We have $\lim _{x \rightarrow-\infty} f(x)=-\infty, \lim _{x \rightarrow \infty} f(x)=\infty$. Then since f is not defined at $x=-2$, we calculate the limits of f there with $\lim _{x \rightarrow-2^{-}} f(x)=-\infty, \lim _{x \rightarrow-2^{+}} f(x)=\infty$. So there is a vertical asymptote at $x=-2$. We can now use this to produce something similar to the following graph noting that f will have a local minimum at $x=-1$ and maximum at $x=-3$ by the second derivative test.

6. Sketch the graph of $f(x)=\frac{x-3}{x+1}$.

Solution: Take the derivative and second derivative to get $f^{\prime}(x)=\frac{4}{(x+1)^{2}}$ and $f^{\prime \prime}(x)=\frac{-2}{(x+1)^{2}}$. We want to make a table and the values we care about are when $f^{\prime}(x)=0, f^{\prime \prime}(x)=0$, and when they are not defined. They are not defined at $x=-1$ and solving $f^{\prime}(x)=0, f^{\prime \prime}(x)=0$ has no solutions. So the points we need to put in our table is just. We fill out the table the sign of $f^{\prime}, f^{\prime \prime}$ on these intervals to get

	$(-\infty,-1)$	-1	$(-1, \infty)$
$f^{\prime}(x)$	+	DNE	+
$f^{\prime \prime}(x)$	+	DNE	+

Now we calculate the limits as $x \rightarrow \pm \infty$. We have $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow \infty} f(x)=1$. So there is a horizontal asymptote at $y=1$. Now we calculate what happens as $x \rightarrow-1$ and we have $\lim _{x \rightarrow-1^{-}} f(x)=\infty, \lim _{x \rightarrow-1^{+}} f(x)=-\infty$ so it has a vertical asymptote at $x=-1$. We can now use this to produce something similar to the following graph.

